Home > Knowledge > Content

Overview of IEC 62271-200 HV Switchgear

Sep 05, 2017

Although the old IEC 60298 standard was very helpful, in time it was superseded by the technological progress. Above all, the appearance of maintenance- free vacuum circuit-breakers, with operating cycles far exceeding the normal number, made frequent access to this circuit-breaker no longer of prime importance.

The vacuum arc-quenching principle is technologically so superior to other arc-quenching principles that the circuit-breaker can be fixed-mounted again. This resulted in the first-time use of gas insulation with the important features of climatic independence, compactness and maintenance-free design. However, both technologies – the vacuum arc-quenching principle and gas insulation – were not adequately taken into account in the existing standard. Therefore, at the end of the nineties, the responsible IEC committees decided on the reformulation of the switchgear standard, which finally came into effect as IEC 62271-200 in November 2003. At the same time the old IEC 60298 standard was withdrawn without any transition period.

Four key features are of special note with the new IEC 62271-200 standard:

1. Changed dielectric requirements

According to IEC 60298, two disruptive discharges were permitted in a series of 15 voltage impulses for the test with rated lightning impulse withstand voltage. According to the new standard, the series must be extended by another fi ve voltage impulses if a disruptive discharge has occurred during the fi rst 15 impulses. This can lead to a maximum of 25 voltage impulses, whereas the maximum number of permissible disruptive discharges is still two.

2. Increased demands on the circuit breaker and earthing switch

In contrast to the previous standard, the switching capacity test of both switching devices is no longer carried out as a pure device test. Instead, it is now mandatory to carry out the test in the corresponding switchgear panel. The switching capacity may get a negative infl uence from the different arrangement of the switchgear with contact arms, moving contacts, conductor bars, etc.

For this reason, the test duties T100s and T100a from the IEC 62271-100 standard are stipulated for the test of the circuitbreaker inside the switchgear panel.

3. New partition classification

The new partition classes PM (partitions metallic = partitions and shutters made of metal) or PI (partitions nonmetallic = partitions and shutters made of insulating material) now apply with respect to the protection against electric shock during access to the individual components.

The assignment is no longer according to the constructional description (metalclad, compartmented or cubicle-type design), but according to operator-related criteria.

4. Stricter internal arc classification

Significantly stricter changes have also been implemented here. The energy flow direction of the arc supply, the maximum number of permissible panels with the test in the end panel and the dependency of the ceiling height on the respective panel height have been redefined.

In addition, the five following new criteria must always be completely fulfilled (no exceptions are permitted):

Covers and doors remain closed. Limited deformations are accepted.

No fragmentation of the enclosure, no projection of small parts above 60 g weight.

No holes in the accessible sides up to a height of 2 meters.

Horizontal and vertical indicators do not ignite due to the effect of hot gases.

The enclosure remains connected to its earthing parts.

For the internal arc classifi cation of substations with and without control aisle, the testing of the substation with installed switchgear is mandatory in the new IEC 62271-202 standard. The classification of the substation is only valid in combination with the switchgear used for the test.

The classification cannot be transferred to a combination with another switchgear type as each switchgear behaves differently in the case of an internal arc (pressure relief equipment with different cross-sections and pickup pressures, different arcing conditions because of different conductor geometries).